STAAD.Pro Help

V. AS4100 1998 - UPT I Section with UDL and Axial Compression

Verify the capacity of a user-provided table I section per the AS 4100 - 1998 design code.

Details

The beam is a 12 m long, simple span. The member is subjected to 1,000 kN axial compressive force and a 300 kN/m distributed load along the length of the member. Assume that the load is applied at the section shear center and that the load restrains against twist and lateral rotation.

The profile is used is a 1,510 mm deep, doubly-symmetric I section. The web is 32 mm thick. The flanges are 450 mm ✕ 50 mm. The material is grade AS 3678 350 steel. Assume that the flanges are heavily welded to the web.

Material Properties

  • E = 200 GPa
  • G = 80 GPa
  • flange yield stress = web yield stress, fy = 340 MPa (plate thicknesses all within 20 mm to 80 mm)
  • ultimate tensile strength, fu = 450 MPa

Validation

Section Properties

  • height of web, h w = d - t tf - t bf = 1,510 - 50 - 50 = 1,410  mm
  • area of the web, A w = t w × h w = 32 1,410 = 45,120  mm 2
  • area of the flanges, A f = t f × b f = 50 450 = 22,500  mm 2
  • gross area = net area, A g = A n = A w + A tf + A bf = 45,120 + 22,500 + 22,500 = 90,120  mm 2
  • centroid of section (wrt bottom):
    y c = D 2 = 1,510 2 = 755  mm
  • Moment of inertia, major axis:
    I z = 2 A f y c - t f 2 2 + b f t f 3 12 + t w h w 3 12
    = 2 22,500 755 - 50 2 2 + 450 50 3 12 + 32 1,410 3 12
    = 2 11.99 + 0.05 + 7.48 × 10 9 = 31.47 10 9  mm 4
  • Moment of inertia, minor axis: I y = 2 t f b f 3 12 + h w t w 3 12
  • = 2 50 450 3 12 + 1,410 32 3 12 = 2 379.7 + 3.85 10 6 = 763.2 10 6  mm 4
  • Elastic section modulus, major axis: Z z = I z y c = 31.47 10 9 755 = 41.68 10 6  mm 3
  • Elastic section modulus, minor axis: Z y = I y b f 2 = 763.2 10 6 450 2 = 3.392 10 6  mm 3
  • Plastic neutral axis (wrt bottom): y pna = y c = 755  mm
  • Plastic section modulus, major axis: Sz = 488.75 (10)6 mm3
  • Plastic section modulus, major axis: Sy = 5.423 (10)6 mm3
  • Radius of gyration about the major axis: r z = I z A g = 31.47 10 9 90,120 = 590.9  mm
  • Radius of gyration about the minor axis: r y = I y A g = 763.2 10 6 90,120 = 92.0  mm
  • Torsional constant: J = 1 3 b bf t bf 3 + b tf t tf 3 + h w t w 3 = 1 3 450 50 3 + 450 50 3 + 1,400 32 3 = 52.9 10 6  mm 4
  • Distance between flange centroids: d f = d - t bf + t tf 2 = 1,510 - 50 + 50 2 = 1,460  mm
  • Moment of inertia about y of the compression flange: I cy = b f b f 3 12 = 50 450 3 12 = 379.7 10 6  mm 4
  • Warping constant: I w = I cy d f 2 1 - I cy I y = 379.7 10 6 1,460 2 1 - 379.7 10 6 763.2 10 6 = 406.7 10 12  mm 6

Design Forces

Design maximum shear:
  • Max. reaction: V u = w u l 2 = 300 12 2 = 1,800  kN
b 2 = b f - t w 2 = 450 - 32 2 = 209  mm
λ ef = b t f f y 250 = 209 50 340 250 = 6.76 < λ ep = 8

Design maximum moment:

  • Max. moment, M*: M max = w u l 2 8 = 300 12 2 8 = 5,400  kN·m = M 4 at mid-span
  • Moment at ¼ point = Moment at ¾ point: M 2 = M 4 = 3 w u l 2 32 = 3 300 12 2 32 = 4,050  kN·m

Design axial force:

  • N* = 1,000 kN (compression)

Section Slenderness Ratio

Flange section slenderness parameter:

λ ef = b bf - t w 2 t bf f y 250 = 450 - 32 2 50 340 250 = 4.88 < λ ep = 8

Hence, the flanges are compact.

Web section slenderness parameter:

λ ew = h w t w f y 250 = 1,410 32 340 250 = 51.4 < λ ep = 82

Hence, the web is compact.

Bending Capacity

The section bending capacity about the major axis (cl. 5.2 of AS 4100) is determined using the section modulus as:

Z cz = | S z = 41.86 10 6  ← governs 1.5 Z z = 1.5 × 48.75 10 6 = 73.13 10 3 min

The nominal section capacity about the Z axis:

M sz = Z cz f y = 41.86 10 6 × 340 10 -6 = 16,580  kN·m

The factored section capacity about the Z axis:

ϕ M sz = 0.9 16,580 = 14,920  kN·m

The section bending capacity about the minor axis (cl. 5.2 of AS 4100) is determined using the section modulus as:

Z cy = | S y = 5.432 10 6 1.5 Z y = 1.5 × 3.392 10 3 = 5.088 10 3  ← governs min

The nominal section capacity about the Y axis:

M sy = Z cy f y = 5.088 10 6 × 340 10 -6 = 1,730  kN·m

The factored section capacity about the Z axis:

ϕ M sy = 0.9 1,730 = 1,557  kN·m

The section bending capacity against lateral torsional buckling is checked per cl. 5.6.1 of AS 4100. The twist restraint factor, load height factor, and lateral rotation restraint factor are all equal to unity (1.0). Thus, le = L×ktklkr = L = 12 m.

The moment modification factor is given as:

ɑ m = 1.7 M max M 2 2 + M 3 2 + M 4 2 = 1.7 5,400 4,050 2 + 5,400 2 + 4,050 2 = 1.166 (cl. 5.6.1.1(a)(iii) )

The reference buckling moment:

M o = π 2 E I y l e 2 G J + π 2 E I w l e 2 (Eqn. 5.6.1.1(3) )
where
A
=
π 2 E I y l e 2 = π 2 200 763.2 10 6 12,000 2 = 10,462
B
=
G J = 80 × 52.9 10 6 = 4.23 10 9
C
=
π 2 E I w l e 2 = π 2 200 406.7 10 12 12,000 2 = 5.575 10 9
= A ( B + C ) ( 10 ) -3 = 10,130  kN·m

The slenderness reduction factor per AS 4100 Eq. 5.6.1.1(2):

ɑ sz = 0.6 [ M sz 2 M o 2 + 3 - M sz M o ] = 0.6 [ 16,580 2 10,130 2 + 3 - 16,580 10,130 ] = 0.448

The nominal member capacity:

M bz = ɑ m ɑ sz M sz = 1.166 × 0.448 × 16,580 = 8,661  kN·m < M sz

The factored section capacity about the Z axis:

ϕ M bz = 0.9 8,661 = 7,795  kN·m

Shear Capacity

The shear area along the Z axis:

A z = A tf + A bf = 22,500 + 22,500 = 45,000  mm 2

The nominal shear capacity along the Z axis:

V wz = 0.6 f y A z = 0.6 340 45,000 10 -3 = 9,180  kN (Cl. 5.11.4)

The factored shear capacity:

ϕ V wz = 0.9 9,180 = 8,262  kN

The shear area along the Y axis:

A y = A w = 45,120  mm 2
h w t w = 1,410 32 = 44.1 < 82 f y 250 = 82 340 250 = 70.3 (Cl. 5.11.2)

Thus, shear buckling does not control (i.e., Vu = Vw).

The nominal shear capacity along the Z axis:

V wy = 0.6 f y A y = 0.6 340 45,120 10 -3 = 9,204  kN (Cl. 5.11.4)

The factored shear capacity:

ϕ V wy = 0.9 9,204 = 8,284  kN

Compression Capacity

The plate element yield slenderness limits for heavily welded flanges = 14, webs = 35 (Table 6.2.4 of AS 4100 1998)

The calculated effective bottom flange width and effective depth (cl. 6.2.1 of AS 4100):

  • λef = 4.88 < λey_f = 14
  • λew = 51.4 > λey_w = 35

Therefore, the effective area is not reduced for the flanges; but it is reduced for the web:

h we = h w λ ey_w λ e_w = 1,410 35 51.4 = 960  mm

The effective area:

A e = A ew + A tf + A bf = 960 × 32 + 2 22,500 = 75,720  mm 2

The form factor (cl. 6.2.2), kf = 75,720 / 90,120 = 0.840

The nominal section compression capacity:

N sc = k f A n f y = 0.840 90,120 × 340 10 -3 = 25,750  kN

The factored section compression capacity:

ϕ N sc = ϕ N sc = 0.9 25,750 = 23,170  kN

The member compression capacity about the Z axis.

N c = ɑ c N sc N sc (cl. 6.3.3)
where
ɑ b
=
1.0 per Table 6.3.3(2) for welded I sections with kf < 1 and flanges > 40 mm thick
k e
=
1.0
λ nz
=
k e L r z k f f y 250 = 1.0 12,000 590.9 0.840 340 250 = 21.7
ɑ a
=
2,100 λ n - 13.5 λ n 2 - 15.3 λ n + 2,050 = 2,100 21.7 - 13.5 21.7 2 - 15.3 21.7 + 2,050 = 7.88
λ
=
λ n + ɑ a ɑ b = 21.7 + 7.88 × 1.0 = 29.6
η
=
0.00326 λ - 13.5 = 0.00326 29.6 - 13.5 = 0.052 0 , ok
ξ
=
λ 90 2 + 1 + η 2 λ 90 2 = 29.6 90 2 + 1 + 0.052 2 29.6 90 2 = 5.370
ɑ cz
=
ξ 1 - 1 - 90 ξ λ 2 = 5.370 1 - 1 - 90 5.370 × 29.6 2 = 0.945
N cz = ɑ cz N sc = 0.945 × 25,750 = 24,330  kN

The factored member compression capacity about the Z axis:

ϕ N cz = 0.9 24,330 = 21,900  kN

The member compression capacity about the Y axis:

N c = ɑ c N sc N sc (cl. 6.3.3)
where
λ ny
=
k e L r y k f f y 250 = 1.0 12,000 92.0 0.840 340 250 = 139.4
ɑ a
=
2,100 λ n - 13.5 λ n 2 - 15.3 λ n + 2,050 = 2,100 139.4 - 13.5 139.4 2 - 15.3 139.4 + 2,050 = 13.66
λ
=
λ n + ɑ a ɑ b = 139.4 + 13.66 × 1.0 = 153.1
η
=
0.00326 λ - 13.5 = 0.00326 153.1 - 13.5 = 0.455 0 , OK
ξ
=
λ 90 2 + 1 + η 2 λ 90 2 = 153.1 90 2 + 1 + 0.455 2 153.1 90 2 = 0.752
ɑ cy
=
ξ 1 - 1 - 90 ξ λ 2 = 0.752 1 - 1 - 90 0.752 × 153.1 2 = 0.283
N cy = ɑ cy N sc = 0.283 × 25,750 = 7,287  kN

The factored member compression capacity about the Y axis:

ϕ N cy = 0.9 7,287 = 6,558  kN

Tension Capacity

Assume an end connection which provides uniform force distribution (i.e., kt = 1.0)

N t = | A g f y = 90,120 340 10 -3 = 30,640  kN  ← governs 0.85 k t A g f u = 0.85 1.0 90,120 450 10 -3 = 34,470  kN min

The factored tension capacity:

ϕ N t = 0.9 30,640 = 27,580  kN

Check Against Combined Actions

Uniaxial bending capacity about the Z axis:

ϕ M rz = ϕ M sz 1 - N * ϕ N sc 1 + 0.18 82 - λ w 82 - λ wy (Cl. 8.3.2 b)
= 14,920 1 - 1,000 23,170 1 + 0.18 82 - 51.4 82 - 35 = 14,920 0.957 1.117 = 15,950  kN·m

ϕ M rz > ϕ M sz = 14,920  kN·m , therefore ϕ M rz = 14,920  kN·m

Uniaxial bending capacity about the Y axis:

ϕ M ry = ϕ 1.19 M sy 1 - N * ϕ N sc 2 = 1.19 1,557 1 - 1,000 23,170 2 = 1,850  kN·m (Cl. 8.3.3 a)

ϕ M ry > ϕ M sy = 1,557  kN·m , therefore ϕ M ry = 1,557  kN·m

Member bending capacity: in-plane about the Z axis:

ϕ M iz = ϕ M sz 1 - N * ϕ N cz = 14,920 1 - 1,000 21,900 = 14,240  kN·m (Cl. 8.4.2.2)

Member bending capacity: in-plane about the Y axis:

ϕ M iy = ϕ M sy 1 - N * ϕ N cy = 1,557 1 - 1,000 6,558 = 1,320  kN·m (Cl. 8.4.2.2)

Member combined capacity out-of-plane:

ϕ M oz = ϕ M bz 1 - N * ϕ N cy = 7,795 1 - 1,000 6,558 = 6,606  kN·m (Cl. 8.4.4.1)

Ratio for biaxial bending: here, ϕMcz = the minimum of ϕMiz and ϕMoz

M z * ϕ M cz 1.4 + M y * ϕ M iy 1.4 = 5,400 6,606 1.4 + 0 1,557 1.4 = 0.754

Results

Result Type Reference STAAD.Pro Difference Comments
The nominal section moment capacity about Z axis (k·Nm) 14,920 14.9190(10)3 negligible  

The nominal section moment capacity about Y axis (k·Nm)

1,557 1.557(10)3 none
The nominal member moment capacity (k·Nm) 7,795 7.7905(10)3 negligible  
Shear Capacity Z axis(kN) 8,262 8.262(10)3 none

Shear Capacity Y axis(kN)

8,284 8.284(10)3 none
Nominal section compression capacity (kN) 23,170 23.1742(10)3 negligible
Nominal member compression capacity Z axis(kN) 21,900 0.2185(10)5 negligible
Nominal member compression capacity Y axis(kN) 6,558 0.6448(10)4 1.7% difference

Section Tension Capacity(kN)

27,580 27.5767(10)4 negligible

Uniaxial bending Capacity Z axis(k·Nm)

14,920 14.919(10)3 negligible

Uniaxial bending Capacity Y axis(k·Nm)

1,557 1.557(10)3 none

Member Capacity - In-plane Z axis(k·Nm)

14,240 14.2362(10)3 negligible

Member Capacity - In-plane Y axis(k·Nm)

1,320 1.3155(10)3 negligible

Member Capacity - Out-of-plane (k·Nm)

6,606 6.5832(10)3 negligible  

Member Combined Capacity - Biaxial(compression) ratio

0.754 0.758 negligible
Note: STAAD.Pro uses the general version of the equations for bending member capacities under combined actions, even when the alternative calculations apply. The approach in STAAD.Pro is slightly conservative for some members.

STAAD.Pro Input

The file C:\Users\Public\Public Documents\STAAD.Pro 2023\Samples \Verification Models\09 Steel Design\Australia\AS4100 1998 - UPT I Section with UDL and Axial Compression.STD is typically installed with the program.

The following design parameters are used:

  • The value of SGR 9 indicates that the steel grade is AS/NZS 3678 350.
  • The value of IST 5 indicates that the section is heavily welded longitudinal steel per Table 5.2 of AS 4100 - 1998.
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 02-Jan-23
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 4 12 0 0;
MEMBER INCIDENCES
1 1 4;
DEFINE PMEMBER
1 PMEMBER 1
START USER TABLE
TABLE 1
UNIT METER KN
ISECTION
816X350X28
0.816 0.01 0.816 0.35 0.028 0.3 0.028 0.1 0.1 0.1
1510X450X50
1.51 0.032 1.51 0.45 0.05 0.45 0.05 0.04512 0.045 0
END
DEFINE MATERIAL START
ISOTROPIC STEEL
E 1.99947e+08
POISSON 0.3
DENSITY 76.8191
ALPHA 6.5e-06
DAMP 0.03
G 7.7221e+07
TYPE STEEL
STRENGTH RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY
1 UPTABLE 1 1510X450X50
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 PINNED
4 FIXED BUT FX MY MZ
LOAD 1 LOADTYPE None  TITLE LOAD CASE 1
MEMBER LOAD
1 UNI GY -300
1 CON GX -1000 12
1 CON GX 1000 0
PERFORM ANALYSIS
PARAMETER 1
CODE AUSTRALIAN
SGR 9 PMEMB 1
IST 5 PMEMB 1
TRACK 2 PMEMB 1
CHECK CODE PMEMB ALL
FINISH

STAAD.Pro Output

                    STAAD.Pro CODE CHECKING - (  AS4100-1998   ) V2.3           
                    ****************************************************
   MEMBER DESIGN OUTPUT FOR PMEMBER     1
   DESIGN Notes
   ------------
   1. (*) next to a Load Case number signifies that a P-Delta analysis has not been performed for
      that particular Load Case; i.e. analysis does not include second-order effects.
   2. ϕ = 0.9 for all the calculations [AS4100 Table 3.4]
   3. (#) next to Young's modulus E indicates that its value is not 200000 MPa as per AS4100 1.4.
   DESIGN SUMMARY
   =====================================================================================
   Designation: ST   1510X450X50              (UPT)
   Governing Load Case:     1*
   Governing Criteria: AS-8.4.4.1  
   Governing Ratio:   0.820  (PASS)
   SECTION PROPERTIES
   =====================================================================================
    d:      1510.0000 mm   bf:       450.0000 mm
   tf:        50.0000 mm   tw:        32.0000 mm
   Ag:     90120.0000 mm2   J:    52.9010E+06 mm4             Iw:   406.7227E+12 mm6
   Iz:    31.4651E+09 mm4  Sz:    48.7548E+06 mm3 (plastic)   Zz:    41.6757E+06 mm3 (elastic)
   rz:   590.8867E+00 mm
   Iy:   763.2253E+06 mm4  Sy:     5.4235E+06 mm3 (plastic)   Zy:     3.3921E+06 mm3 (elastic)
   ry:    92.0271E+00 mm
   MATERIAL PROPERTIES
   =====================================================================================
   Material Standard        :  AS 3678
   Nominal Grade            :  350
   Residual Stress Category :  HW (Heavily welded longitudinally)
   E (#)      :199947.000 MPa    [AS 4100 1.4]
   G          : 80000.000 MPa    [AS 4100 1.4]
   fy, flange :   340.000 MPa    [AS 4100 Table 2.1]
   fy, web    :   340.000 MPa    [AS 4100 Table 2.1]
   fu         :   450.000 MPa    [AS 4100 Table 2.1]
   SLENDERNESS
   =====================================================================================
   Actual slenderness:    130.396
   Allowable slenderness: 180.000
      STAAD SPACE                                              -- PAGE NO.    4 
   BENDING
   =====================================================================================
   Section Bending Capacity
   Critical Load Case:     1*          Critical Ratio:   0.362
   Critical Location:        6.000 m from Start.
   Mz* =    -5.4000E+03 KNm                      My* =     0.0000E+00 KNm
   Z-Axis Section Slenderness: Compact           Y-Axis Section Slenderness: Compact 
   Zez =    48.7548E+06 mm3                      Zey =     5.0882E+06 mm3
   ϕMsz =    14.9190E+03 KNm                     ϕMsy =     1.5570E+03 KN[AS 4100 5.2.1]
   Member Bending Capacity
   Critical Load Case:     1*          Critical Ratio:   0.693
   Critical Location:        6.000 m from Start.
   Crtiical Segment/Sub-segment: 
   Location (Type):   0.00 m(F )- 12.00 m(F )
   Length:   12.00 m
   Mz* =    -5.4000E+03 KNm                      My* =     0.0000E+00 KNm
   kt   =      1.00                         [AS4100 Table 5.6.3(1)]
   kl   =      1.00                         [AS4100 Table 5.6.3(2)]
   kr   =      1.00                         [AS4100 Table 5.6.3(3)]
   le   =     12.00 m                       [AS4100 5.6.3]
   αm   =     1.166                         [AS4100 5.6.1.1(a)(iii)]
   Mo   =    10.1273E+03 KNm                [AS4100 5.6.1.1(a)(iv)]
   αsz  =     0.448                         [AS4100 5.6.1.1(a)(iv)]
   ϕMbz =     7.7905E+03 KNm (<= ϕMsz)      [AS4100 5.6.1.1(a)] 
   SHEAR
   =====================================================================================
   Section Shear Capacity
   Critical Load Case:     1*          Critical Ratio:   0.181
   Critical Location:        1.000 m from Start.
   Vy*  =     1.5000E+03 KN
   ϕVvy  =     8.2840E+03 KN                [AS 4100 5.11.2] 
   ϕVvmy =     8.2840E+03 KN                [AS 4100 5.12.3]
   Vz*  =     0.0000E+00 KN
   ϕVvz  =     8.2620E+03 KN                [AS 4100 5.11.2] 
   ϕVvmz =     8.2620E+03 KN                [AS 4100 5.12.3]
      STAAD SPACE                                              -- PAGE NO.    5 
   AXIAL
   =====================================================================================
   Section Compression Capacity
   Critical Load Case:     1*          Critical Ratio:   0.155
   Critical Location:        1.000 m from Start.
   N*    =     1.0000E+03 KN
   Ae    =    75.7325E+03 mm2               [AS 4100 6.2.3 / 6.2.4]
   kf    =     0.840                        [AS 4100 6.2.2]
   An    =    90.1200E+03 mm2
   ϕNs   =    23.1742E+03 KN                [AS 4100 6.2.1]
   Member Compression Capacity
   Lz    =     12.00 m
   Ly    =     12.00 m
   Lez   =     12.00 m
   Ley   =     12.00 m
   αb    =      1.00                        [AS 4100 Table 6.3.3(1)/6.3.3(2)]
   λn,z  =    21.993                        [AS 4100 6.3.3]
   αa,z  =     8.117                        [AS 4100 6.3.3]
   λ,z   =    30.110                        [AS 4100 6.3.3]
    h ,z   =     0.054                        [AS 4100 6.3.3]
    x ,z   =     5.209                        [AS 4100 6.3.3]
   αc,z  =     0.943                        [AS 4100 6.3.3]
   ϕNcz  = 0.2185E+5 KN                     [AS 4100 6.3.3] 
   λn,y  =   141.212                        [AS 4100 6.3.3]
   αa,y  =    13.525                        [AS 4100 6.3.3]
   λ,y   =   154.736                        [AS 4100 6.3.3]
    h ,y   =     0.460                        [AS 4100 6.3.3]
    x ,y   =     0.747                        [AS 4100 6.3.3]
   αc,y  =     0.278                        [AS 4100 6.3.3]
   ϕNcy  = 0.6448E+4 KN                     [AS 4100 6.3.3] 
   ϕNc   = N/A                              [AS 4100 6.3.3 / AS 4600 3.4.1(b)]
   Section Tension Capacity
   Critical Load Case:     1*          Critical Ratio:   0.000
   Critical Location:        0.000 m from Start.
   N*    =     0.0000E+00 KN
   kt    =      1.00                        [User defined]
   An    =    90.1200E+03 mm2
   ϕNt   =    27.5767E+03 KN                [AS 4100 7.2] 
      STAAD SPACE                                              -- PAGE NO.    6 
   COMBINED BENDING AND AXIAL
   =====================================================================================
   Section Combined Capacity
   Critical Condition: Cl 8.3.2
   Critical Load Case:     1*          Critical Ratio:   0.362
   Critical Location:        6.000 m from Start.
   N* =     1.0000E+03 KN    Mz* =    -5.4000E+03 KNm      My* =     0.0000E+00 KNm
   ϕNs   =    23.1742E+03 KN                [AS 4100 8.3.1]
   ϕMsz  =    14.9190E+03 KNm
   ϕMsy  =     1.5570E+03 KNm
   ϕMrz  =    14.9190E+03 KNm               [AS 4100 8.3.2] 
   ϕMry  =     1.5570E+03 KNm               [AS 4100 8.3.3] 
   Member Combined Capacity - In-plane
   Critical Load Case:     1*          Critical Ratio:   0.379
   Critical Location:        6.000 m from Start.
   N* =     1.0000E+03 KN    Mz* =    -5.4000E+03 KNm      My* =     0.0000E+00 KNm
   ϕNcz  =    21.8513E+03 KN                [AS 4100 8.4.2.2]
   ϕMiz  =    14.2362E+03 KNm               [AS 4100 8.4.2.2] 
   ϕNcy  =     6.4482E+03 KN                [AS 4100 8.4.2.2]
   ϕMiy  =     1.3155E+03 KNm               [AS 4100 8.4.2.2] 
   Member Combined Capacity - Out-of-plane(compression)
   Critical Load Case:     1*          Critical Ratio:   0.820
   Critical Location:        6.000 m from Start.
   N* =     1.0000E+03 KN    Mz* =    -5.4000E+03 KNm      My* =     0.0000E+00 KNm
   ϕMbz  =     7.7905E+03 KNm
   ϕNcy  =     6.4482E+03 KN
   ϕMozc =     6.5823E+03 KNm               [AS 4100 8.4.4.1] 
   Member Combined Capacity - Out-of-plane(tension)
   Critical Load Case: N/A             Critical Ratio: N/A
   Critical Location: N/A
   Member Combined Capacity - Biaxial(compression)
   Critical Load Case:     1*          Critical Ratio:   0.758 
   Critical Location:        6.000 m from Start.
   N* =     1.0000E+03 KN    Mz* =    -5.4000E+03 KNm      My* =     0.0000E+00 KNm
   ϕMcz  =     6.5823E+03 KNm               [AS 4100 8.4.5.1]
   ϕMiy  =     1.3155E+03 KNm               [AS 4100 8.4.5.1]
   Member Combined Capacity - Biaxial(tension)
   Critical Load Case: N/A             Critical Ratio: N/A
   Critical Location: N/A
      STAAD SPACE                                              -- PAGE NO.    7 
   ********************************************************************************